Reduced El Niño–Southern Oscillation during the Last Glacial Maximum

See allHide authors and affiliations

Science  16 Jan 2015:
Vol. 347, Issue 6219, pp. 255-258
DOI: 10.1126/science.1258437

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

A new tilt on predicting future ENSO variability

A new finding should improve the ability of climate models to predict the behavior of the El Niño–Southern Oscillation (ENSO) in a warmer future. Ford et al. looked at the distribution of surface and subsurface temperatures in the eastern and western equatorial Pacific 19,000 years ago and between 3000 and 6000 years ago. Temperatures fluctuated over a greater range during the older period. ENSO thus depended more on the tilt of the equatorial Pacific thermocline than on the east-to-west temperature gradient, as previously thought.

Science, this issue p. 255


El Niño–Southern Oscillation (ENSO) is a major source of global interannual variability, but its response to climate change is uncertain. Paleoclimate records from the Last Glacial Maximum (LGM) provide insight into ENSO behavior when global boundary conditions (ice sheet extent, atmospheric partial pressure of CO2) were different from those today. In this work, we reconstruct LGM temperature variability at equatorial Pacific sites using measurements of individual planktonic foraminifera shells. A deep equatorial thermocline altered the dynamics in the eastern equatorial cold tongue, resulting in reduced ENSO variability during the LGM compared to the Late Holocene. These results suggest that ENSO was not tied directly to the east-west temperature gradient, as previously suggested. Rather, the thermocline of the eastern equatorial Pacific played a decisive role in the ENSO response to LGM climate.

View Full Text