Report

Linked canopy, climate, and faunal change in the Cenozoic of Patagonia

Science  16 Jan 2015:
Vol. 347, Issue 6219, pp. 258-261
DOI: 10.1126/science.1260947

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Fluctuations revealed in fossil forests

The reconstruction of past vegetation unlocks the door to understanding ecological changes associated with climatic change. But it is also difficult. Dunn et al. developed a method for assessing changes in vegetation openness based on epidermal cell morphology from conserved plant tissue. Applying this method to fossil assemblages from Patagonia, they show how vegetation structure changed over the Cenozoic era (49 to 11 million years ago). These changes map onto the known climate changes over this period and can also be used to track how the evolution of herbivorous mammals responded to vegetation structure.

Science, this issue p. 258

Abstract

Vegetation structure is a key determinant of ecosystems and ecosystem function, but paleoecological techniques to quantify it are lacking. We present a method for reconstructing leaf area index (LAI) based on light-dependent morphology of leaf epidermal cells and phytoliths derived from them. Using this proxy, we reconstruct LAI for the Cenozoic (49 million to 11 million years ago) of middle-latitude Patagonia. Our record shows that dense forests opened up by the late Eocene; open forests and shrubland habitats then fluctuated, with a brief middle-Miocene regreening period. Furthermore, endemic herbivorous mammals show accelerated tooth crown height evolution during open, yet relatively grass-free, shrubland habitat intervals. Our Patagonian LAI record provides a high-resolution, sensitive tool with which to dissect terrestrial ecosystem response to changing Southern Ocean conditions during the Cenozoic.

View Full Text