Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance

Science  23 Jan 2015:
Vol. 347, Issue 6220, pp. 431-435
DOI: 10.1126/science.1260403

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution

Mechanisms propelling drug resistance

If it were to spread, resistance to the drug artemisinin would seriously derail the recent gains of global malaria control programs (see the Perspective by Sibley). Mutations in a region called the K13-propeller are predictive for artemisinin resistance in Southeast Asia. Mok et al. looked at the patterns of gene expression in parasites isolated from more than 1000 patients sampled in Africa, Bangladesh, and the Mekong region. A range of mutations that alter protein repair pathways and the timing of the parasite's developmental cycle were only found in parasites from the Mekong region. Straimer et al. genetically engineered the K13 region of parasites obtained from recent clinical isolates. Mutations in this region were indeed responsible for the resistance phenotypes.

Science, this issue p. 431, p. 428; see also p. 373


Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain–carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of 1043 P. falciparum isolates from patients with acute malaria and found that artemisinin resistance is associated with increased expression of unfolded protein response (UPR) pathways involving the major PROSC and TRiC chaperone complexes. Artemisinin-resistant parasites also exhibit decelerated progression through the first part of the asexual intraerythrocytic development cycle. These findings suggest that artemisinin-resistant parasites remain in a state of decelerated development at the young ring stage, whereas their up-regulated UPR pathways mitigate protein damage caused by artemisinin. The expression profiles of UPR-related genes also associate with the geographical origin of parasite isolates, further suggesting their role in emerging artemisinin resistance in the Greater Mekong Subregion.

View Full Text