Report

Constrained work output of the moist atmospheric heat engine in a warming climate

Science  30 Jan 2015:
Vol. 347, Issue 6221, pp. 540-543
DOI: 10.1126/science.1257103

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Because the rain falls and the wind blows

Global warming is expected to intensify the hydrological cycle, but it might also make the atmosphere less energetic. Laliberté et al. modeled the atmosphere as a classical heat engine in order to evaluate how much energy it contains and how much work it can do (see the Perspective by Pauluis). They then used a global climate model to project how that might change as climate warms. Although the hydrological cycle may increase in intensity, it does so at the expense of its ability to do work, such as powering large-scale atmospheric circulation or fueling more very intense storms.

Science, this issue p. 540; see also p. 475

Abstract

Incoming and outgoing solar radiation couple with heat exchange at Earth’s surface to drive weather patterns that redistribute heat and moisture around the globe, creating an atmospheric heat engine. Here, we investigate the engine’s work output using thermodynamic diagrams computed from reanalyzed observations and from a climate model simulation with anthropogenic forcing. We show that the work output is always less than that of an equivalent Carnot cycle and that it is constrained by the power necessary to maintain the hydrological cycle. In the climate simulation, the hydrological cycle increases more rapidly than the equivalent Carnot cycle. We conclude that the intensification of the hydrological cycle in warmer climates might limit the heat engine’s ability to generate work.

View Full Text