Report

Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment

Science  27 Feb 2015:
Vol. 347, Issue 6225, pp. 995-998
DOI: 10.1126/science.1258758

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Channeling Ebola virus entry into the cell

The current outbreak of Ebola virus in West Africa highlights the need for antiviral therapies. One strategy would be to block the Ebola virus's ability to enter host cells. Cells engulf Ebola virus particles, which then traffic into the cell in structures called endosomes. Sakurai et al. now report that the Ebola virus requires calcium channels called two-pore channels (TPCs) in endosomal membranes for successful entry (see the Perspective by Falzarano and Feldmann). The Ebola virus could not enter cells lacking TPCs or cells treated with a TPC inhibitor. Blocking TPCs therapeutically allowed 50% of mice to survive an ordinarily lethal Ebola virus infection.

Science, this issue p. 995; see also p. 947

Abstract

Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy.

View Full Text