Research Article

Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine

See allHide authors and affiliations

Science  06 Mar 2015:
Vol. 347, Issue 6226, pp. 1117-1122
DOI: 10.1126/science.1261064

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Molecular “go” signals reveal their secrets

Chemokines are proteins that direct how cells move within the body. For instance, chemokines help immune cells locate invading pathogens and ensure that cells position themselves correctly within a developing organ. Cells detect chemokines through G protein–coupled receptors on their surface; however, the molecular details of how these proteins interact remain unclear (see the Perspective by Standfuss). Qin et al. solved the crystal structure of the chemokine receptor CXCR4 bound to the viral chemokine vMIP-II. Burg et al. solved the crystal structure of a viral chemokine receptor bound to the chemokine domain of CX3CL1. Given the role of chemokines in a number of diseases, these results may help in future drug design.

Science, this issue p. 1117, p. 1113; see also p. 1071

Abstract

Chemokines and their receptors control cell migration during development, immune system responses, and in numerous diseases, including inflammation and cancer. The structural basis of receptor:chemokine recognition has been a long-standing unanswered question due to the challenges of structure determination for membrane protein complexes. Here, we report the crystal structure of the chemokine receptor CXCR4 in complex with the viral chemokine antagonist vMIP-II at 3.1 angstrom resolution. The structure revealed a 1:1 stoichiometry and a more extensive binding interface than anticipated from the paradigmatic two-site model. The structure helped rationalize a large body of mutagenesis data and together with modeling provided insights into CXCR4 interactions with its endogenous ligand CXCL12, its ability to recognize diverse ligands, and the specificity of CC and CXC receptors for their respective chemokines.

View Full Text