Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens

Science  06 Mar 2015:
Vol. 347, Issue 6226, pp. 1123-1126
DOI: 10.1126/science.aaa3350

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution

Finding four for the light of one

Seeing double may cause concern for some, but seeing quadruple? It's just what astronomers have been hoping for. Kelly et al. have now detected four images of the same distant supernova with the sharp eye of a space telescope. The supernova shines brightly from the arm of a spiral galaxy that lies far beyond another galaxy between it and us. This intervening galaxy is massive enough to bend the light from the supernova and its host galaxy into multiple images. This behavior relies on the curvature of spacetime and will provide insight into the luminous and dark matter in the lensing galaxy.

Science, this issue p. 1123


In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster’s gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses.

View Full Text