Targeting LDH enzymes with a stiripentol analog to treat epilepsy

See allHide authors and affiliations

Science  20 Mar 2015:
Vol. 347, Issue 6228, pp. 1362-1367
DOI: 10.1126/science.aaa1299

You are currently viewing the abstract.

View Full Text

Targeting metabolism to tackle seizures

About 1% of us suffer from epilepsy. Unfortunately, presently available drugs do not work for a third of epileptic patients. Sada et al. wanted to develop compounds to treat drug-resistant epilepsy (see the Perspective by Scharfman). They focused on a metabolic pathway in the brain, the astrocyte-neuron lactate shuttle. They found that lactate dehydrogenase, a key molecule in nerve cell metabolism, controls brain excitability. Searching for a substance that selectively targets this molecule, they found a potential anti-epileptic drug that strongly suppressed drug-resistant epilepsy in an animal model.

Science, this issue p. 1362; see also p. 1312


Neuronal excitation is regulated by energy metabolism, and drug-resistant epilepsy can be suppressed by special diets. Here, we report that seizures and epileptiform activity are reduced by inhibition of the metabolic pathway via lactate dehydrogenase (LDH), a component of the astrocyte-neuron lactate shuttle. Inhibition of the enzyme LDH hyperpolarized neurons, which was reversed by the downstream metabolite pyruvate. LDH inhibition also suppressed seizures in vivo in a mouse model of epilepsy. We further found that stiripentol, a clinically used antiepileptic drug, is an LDH inhibitor. By modifying its chemical structure, we identified a previously unknown LDH inhibitor, which potently suppressed seizures in vivo. We conclude that LDH inhibitors are a promising new group of antiepileptic drugs.

View Full Text