Report

Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts

See allHide authors and affiliations

Science  03 Apr 2015:
Vol. 348, Issue 6230, pp. 102-106
DOI: 10.1126/science.1258788

You are currently viewing the abstract.

View Full Text

Additive explanation for anti-wear

Additives in oil are vital for protecting engines from wear by forming films at sliding interfaces. Zinc dialkydithiophosphate (ZDDP) has been used for decades to reduce engine wear. Now there is a strong incentive for finding a replacement for ZDDP: Its breakdown products shorten catalytic converter lifetime. Gosvami et al. examined exactly how ZDDP produces an anti-wear film under high stress or elevated temperature (see the Perspective by Schwarz). Understanding these mechanisms will help in the development of higher-performance and more effective additives.

Science, this issue p. 102; see also p. 40

Abstract

Zinc dialkyldithiophosphates (ZDDPs) form antiwear tribofilms at sliding interfaces and are widely used as additives in automotive lubricants. The mechanisms governing the tribofilm growth are not well understood, which limits the development of replacements that offer better performance and are less likely to degrade automobile catalytic converters over time. Using atomic force microscopy in ZDDP-containing lubricant base stock at elevated temperatures, we monitored the growth and properties of the tribofilms in situ in well-defined single-asperity sliding nanocontacts. Surface-based nucleation, growth, and thickness saturation of patchy tribofilms were observed. The growth rate increased exponentially with either applied compressive stress or temperature, consistent with a thermally activated, stress-assisted reaction rate model. Although some models rely on the presence of iron to catalyze tribofilm growth, the films grew regardless of the presence of iron on either the tip or substrate, highlighting the critical role of stress and thermal activation.

View Full Text