Report

Direct observation of structure-function relationship in a nucleic acid–processing enzyme

See allHide authors and affiliations

Science  17 Apr 2015:
Vol. 348, Issue 6232, pp. 352-354
DOI: 10.1126/science.aaa0130

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Engineering superenzyme function

Understanding how protein domains and subunits operate is critical for engineering novel functions into proteins. Arslan et al. introduced intramolecular crosslinks between two domains of the Escherichia coli helicase Rep, which unwinds DNA. By inserting linkers of different lengths, the domains can be held either “open” or “closed.” The closed conformation activates the helicase, but it can also generate super-helicases capable of unzipping long stretches of DNA at high speed and with considerable force. Comstock et al. used optical tweezers and fluorescence microscopy to simultaneously measure the structure and function of the bacterial helicase UvrD. They monitored its DNA winding and unwinding activity and its shape during these activities. The motor domain also has a “closed” conformation during DNA unwinding and switches to a reversed “open” conformation during the zipping-up interaction.

Science, this issue p. 344 and p. 352

Abstract

The relationship between protein three-dimensional structure and function is essential for mechanism determination. Unfortunately, most techniques do not provide a direct measurement of this relationship. Structural data are typically limited to static pictures, and function must be inferred. Conversely, functional assays usually provide little information on structural conformation. We developed a single-molecule technique combining optical tweezers and fluorescence microscopy that allows for both measurements simultaneously. Here we present measurements of UvrD, a DNA repair helicase, that directly and unambiguously reveal the connection between its structure and function. Our data reveal that UvrD exhibits two distinct types of unwinding activity regulated by its stoichiometry. Furthermore, two UvrD conformational states, termed “closed” and “open,” correlate with movement toward or away from the DNA fork.

View Full Text