CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere

See allHide authors and affiliations

Science  08 May 2015:
Vol. 348, Issue 6235, pp. 699-703
DOI: 10.1126/science.1259308

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Building stable centromeres

Each of our chromosomes has a single centromere, seen as a constriction during cell division, which is required for accurate chromosome segregation to daughter cells. Falk et al. show that the special histone protein known as CENP-A, which forms part of the nucleosomes at centromeres, makes the chromatin at these constrictions very stable and long-lived. This stability is conferred by a protein-binding partner, CENP-C, recruited to the centromere by the CENP-A histone. Binding of CENP-C to CENP-A–containing nucleosomes alters the behavior of the macromolecular centromere complex to help it maintain its identity

Science, this issue p. 699


Inheritance of each chromosome depends upon its centromere. A histone H3 variant, centromere protein A (CENP-A), is essential for epigenetically marking centromere location. We find that CENP-A is quantitatively retained at the centromere upon which it is initially assembled. CENP-C binds to CENP-A nucleosomes and is a prime candidate to stabilize centromeric chromatin. Using purified components, we find that CENP-C reshapes the octameric histone core of CENP-A nucleosomes, rigidifies both surface and internal nucleosome structure, and modulates terminal DNA to match the loose wrap that is found on native CENP-A nucleosomes at functional human centromeres. Thus, CENP-C affects nucleosome shape and dynamics in a manner analogous to allosteric regulation of enzymes. CENP-C depletion leads to rapid removal of CENP-A from centromeres, indicating their collaboration in maintaining centromere identity.

View Full Text