Report

Enhanced tropical methane production in response to iceberg discharge in the North Atlantic

Science  29 May 2015:
Vol. 348, Issue 6238, pp. 1016-1019
DOI: 10.1126/science.1262005

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


The tropical impact of iceberg armadas

The massive discharges of icebergs from the Greenland ice sheet during the Last Glacial Period are called Heinrich events. But did Heinrich events cause abrupt climate change, or were they a product of it? Methane levels represent a proxy for climate, because methane production increases mostly due to wetter conditions in the tropics. Rhodes et al. report a highly resolved record of atmospheric methane concentrations, derived from an ice core from Antarctica. Methane levels varied—i.e., the tropical climate changed—in response to cooling in the Northern Hemisphere caused by Heinrich events.

Science, this issue p. 1016

Abstract

The causal mechanisms responsible for the abrupt climate changes of the Last Glacial Period remain unclear. One major difficulty is dating ice-rafted debris deposits associated with Heinrich events: Extensive iceberg influxes into the North Atlantic Ocean linked to global impacts on climate and biogeochemistry. In a new ice core record of atmospheric methane with ultrahigh temporal resolution, we find abrupt methane increases within Heinrich stadials 1, 2, 4, and 5 that, uniquely, have no counterparts in Greenland temperature proxies. Using a heuristic model of tropical rainfall distribution, we propose that Hudson Strait Heinrich events caused rainfall intensification over Southern Hemisphere land areas, thereby producing excess methane in tropical wetlands. Our findings suggest that the climatic impacts of Heinrich events persisted for 740 to 1520 years.

View Full Text