Report

Macroscale superlubricity enabled by graphene nanoscroll formation

Science  05 Jun 2015:
Vol. 348, Issue 6239, pp. 1118-1122
DOI: 10.1126/science.1262024

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Slip sliding away

Many applications would benefit from ultralow friction conditions to minimize wear on the moving parts such as in hard drives or engines. On the very small scale, ultralow friction has been observed with graphite as a lubricant. Berman et al. achieved superlubricity using graphene in combination with crystalline diamond nanoparticles and diamondlike carbon (see the Perspective by Hone and Carpick). Simulations showed that sliding of the graphene patches around the tiny nanodiamond particles led to nanoscrolls with reduced contact area that slide easily against the amorphous diamondlike carbon surface.

Science, this issue p. 1118; see also p. 1087

Abstract

Friction and wear remain as the primary modes of mechanical energy dissipation in moving mechanical assemblies; thus, it is desirable to minimize friction in a number of applications. We demonstrate that superlubricity can be realized at engineering scale when graphene is used in combination with nanodiamond particles and diamondlike carbon (DLC). Macroscopic superlubricity originates because graphene patches at a sliding interface wrap around nanodiamonds to form nanoscrolls with reduced contact area that slide against the DLC surface, achieving an incommensurate contact and substantially reduced coefficient of friction (~0.004). Atomistic simulations elucidate the overall mechanism and mesoscopic link bridging the nanoscale mechanics and macroscopic experimental observations.

View Full Text