Report

Climate change tightens a metabolic constraint on marine habitats

Science  05 Jun 2015:
Vol. 348, Issue 6239, pp. 1132-1135
DOI: 10.1126/science.aaa1605

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Double trouble

It is well known that climate change will warm ocean waters, but dissolved oxygen levels also decrease as water warms. Deutsch et al. combined data on metabolism, temperature, and demographics to determine the impact of marine deoxygenation on a variety of fish and crustacean species (see the Perspective by Kleypas). Predicted climate and oxygen conditions can be expected to contract the distribution of marine fish poleward, as equatorward waters become too low in oxygen to support their energy needs. Furthermore, even the more-poleward waters will have reduced oxygen levels.

Science, this issue p. 1132; see also p. 1086

Abstract

Warming of the oceans and consequent loss of dissolved oxygen (O2) will alter marine ecosystems, but a mechanistic framework to predict the impact of multiple stressors on viable habitat is lacking. Here, we integrate physiological, climatic, and biogeographic data to calibrate and then map a key metabolic index—the ratio of O2 supply to resting metabolic O2 demand—across geographic ranges of several marine ectotherms. These species differ in thermal and hypoxic tolerances, but their contemporary distributions are all bounded at the equatorward edge by a minimum metabolic index of ~2 to 5, indicative of a critical energetic requirement for organismal activity. The combined effects of warming and O2 loss this century are projected to reduce the upper ocean’s metabolic index by ~20% globally and by ~50% in northern high-latitude regions, forcing poleward and vertical contraction of metabolically viable habitats and species ranges.

View Full Text

Cited By...