Report

Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium

Science  26 Jun 2015:
Vol. 348, Issue 6242, pp. 1455-1460
DOI: 10.1126/science.aaa7471

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Driving liquid deuterium into metal

Quick and powerful compression can force materials to change their properties dramatically. Knudson et al. compressed liquid deuterium to extreme temperatures and pressures using high-energy magnetic pulses at the Sandia Z-machine (see the Perspective by Ackland). Deuterium began to reflect like a mirror during compression, as the electrical conductivity sharply increased. The observed conditions for metallization of deuterium and hydrogen help us to build theoretical models for the universe's most abundant element. This a our understanding of the internal layering of gas giant planets such as Jupiter and Saturn.

Science, this issue p. 1455; see also p. 1429

Abstract

Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.

View Full Text