Report

A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection

See allHide authors and affiliations

Science  26 Jun 2015:
Vol. 348, Issue 6242, pp. 1463-1466
DOI: 10.1126/science.aaa7234

You are currently viewing the abstract.

View Full Text

Protection from too much light

Photosynthetic organisms protect themselves from too much light using pigment photoswitches that absorb excess energy. Leverenz et al. analyzed the structure of an active, energy-dissipating form of the orange carotenoid protein (OCP) from a cyanobacterium. When activated by excess light, OCP moves its hydrophobic carotenoid pigment 12 Å within the protein to accommodate nonphotochemical quenching by the broader photosynthetic antenna complex.

Science, this issue p. 1463

Abstract

Pigment-protein and pigment-pigment interactions are of fundamental importance to the light-harvesting and photoprotective functions essential to oxygenic photosynthesis. The orange carotenoid protein (OCP) functions as both a sensor of light and effector of photoprotective energy dissipation in cyanobacteria. We report the atomic-resolution structure of an active form of the OCP consisting of the N-terminal domain and a single noncovalently bound carotenoid pigment. The crystal structure, combined with additional solution-state structural data, reveals that OCP photoactivation is accompanied by a 12 angstrom translocation of the pigment within the protein and a reconfiguration of carotenoid-protein interactions. Our results identify the origin of the photochromic changes in the OCP triggered by light and reveal the structural determinants required for interaction with the light-harvesting antenna during photoprotection.

View Full Text