Report

Effect of the cytoplasmic domain on antigenic characteristics of HIV-1 envelope glycoprotein

See allHide authors and affiliations

Science  10 Jul 2015:
Vol. 349, Issue 6244, pp. 191-195
DOI: 10.1126/science.aaa9804

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Steps in the right direction

HIV-1 mutates rapidly, making it difficult to design a vaccine that will protect people against all of the virus' iterations. A potential successful vaccine design might protect by eliciting broadly neutralizing antibodies (bNAbs), which target specific regions on HIV-1's trimeric envelope glycoprotein (Env) (see the Perspective by Mascola). Jardine et al. used mice engineered to express germline-reverted heavy chains of a particular bNAb and immunized them with an Env-based immunogen designed to bind to precursors of that bNAb. Sanders et al. compared rabbits and monkeys immunized with Env trimers that adopt a nativelike conformation. In both cases, immunized animals produced antibodies that shared similarities with bNAbs. Boosting these animals with other immunogens may drive these antibodies to further mutate into the longsought bNAbs. Chen et al. report that retaining the cytoplasmic domain of Env proteins may be important to attract bNAbs. Removing the cytoplasmic domain may distract the immune response and instead generate antibodies that target epitopes on Env that would not lead to protection.

Science, this issue p. 139, 10.1126/science.aac4223, p. 156; see also p. 191

Abstract

A major goal for HIV-1 vaccine development is the production of an immunogen to mimic native, functional HIV-1 envelope trimeric spikes (Env) on the virion surface. We lack a reliable description of a native, functional trimer, however, because of inherent instability and heterogeneity in most preparations. We describe here two conformationally homogeneous Envs derived from difficult-to-neutralize primary isolates. All their non-neutralizing epitopes are fully concealed and independent of their proteolytic processing. Most broadly neutralizing antibodies (bnAbs) recognize these native trimers. Truncation of their cytoplasmic tail has little effect on membrane fusion, but it diminishes binding to trimer-specific bnAbs while exposing non-neutralizing epitopes. These results yield a more accurate antigenic picture than hitherto possible of a genuinely untriggered and functional HIV-1 Env; they can guide effective vaccine development.

View Full Text