Report

Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics

+ See all authors and affiliations

Science  07 Aug 2015:
Vol. 349, Issue 6248, pp. 647-650
DOI: 10.1126/science.aaa7484

You are currently viewing the abstract.

View Full Text

Silencing neurons using optogenetics

Rhodopsin light-sensitive ion channels from green algae provide a powerful tool to control neuronal circuits. Rhodopsin cation channels effectively depolarize neurons and cause the firing of short-lived electrical membrane potentials. Govorunova et al. describe algal channels that do the opposite; that is, they hyperpolarize or silence particular neurons (see the Perspective by Berndt and Deisseroth). These cation channels provide greater light sensitivity than that of existing hyperpolarizing light-activated channels, operate rapidly, and selectively conduct only anions. This approach is an ideal complement to the widely used technique of creating light-sensitive neurons through the expression of rhodopsin cation channels.

Science, this issue p. 647; see also p. 590

Abstract

Light-gated rhodopsin cation channels from chlorophyte algae have transformed neuroscience research through their use as membrane-depolarizing optogenetic tools for targeted photoactivation of neuron firing. Photosuppression of neuronal action potentials has been limited by the lack of equally efficient tools for membrane hyperpolarization. We describe anion channel rhodopsins (ACRs), a family of light-gated anion channels from cryptophyte algae that provide highly sensitive and efficient membrane hyperpolarization and neuronal silencing through light-gated chloride conduction. ACRs strictly conducted anions, completely excluding protons and larger cations, and hyperpolarized the membrane of cultured animal cells with much faster kinetics at less than one-thousandth of the light intensity required by the most efficient currently available optogenetic proteins. Natural ACRs provide optogenetic inhibition tools with unprecedented light sensitivity and temporal precision.

View Full Text