Research Article

Universal linear optics

See allHide authors and affiliations

Science  14 Aug 2015:
Vol. 349, Issue 6249, pp. 711-716
DOI: 10.1126/science.aab3642

You are currently viewing the abstract.

View Full Text

Complex quantum optical circuitry

Encoding and manipulating information in the states of single photons provides a potential platform for quantum computing and communication. Carolan et al. developed a reconfigurable integrated waveguide device fabricated in a glass chip (see the Perspective by Rohde and Dowling). The device allowed for universal linear optics transformations on six wave-guides using 15 integrated Mach-Zehnder interferometers, each of which was individually programmable. Functional performance in a number of applications in optics and quantum optics demonstrates the versatility of the device's reprogrammable architecture.

Science, this issue p. 711; see also p. 696


Linear optics underpins fundamental tests of quantum mechanics and quantum technologies. We demonstrate a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons, and their measurement with a 12-single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with an average fidelity of 0.999 ± 0.001. Our system can be rapidly reprogrammed to implement these and any other linear optical protocol, pointing the way to applications across fundamental science and quantum technologies.

View Full Text