Mus81 and converging forks limit the mutagenicity of replication fork breakage

See allHide authors and affiliations

Science  14 Aug 2015:
Vol. 349, Issue 6249, pp. 742-747
DOI: 10.1126/science.aaa8391

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

How to repair broken replication forks

Double-strand breaks in DNA are extremely dangerous to the integrity of our genomes. Most arise from problems encountered by replication forks during duplication of genomic DNA. Break-induced replication is known to use an error-prone DNA polymerase to repair such damage. Mayle et al. show that cells limit error-prone DNA synthesis by preventing the DNA polymerase from inadvertently switching to a related sequence with an incorrect template. The repair of the break is achieved by using a structure-specific nuclease to prevent formation of a long single-stranded region.

Science, this issue p. 742


Most spontaneous DNA double-strand breaks (DSBs) result from replication-fork breakage. Break-induced replication (BIR), a genome rearrangement–prone repair mechanism that requires the Pol32/POLD3 subunit of eukaryotic DNA Polδ, was proposed to repair broken forks, but how genome destabilization is avoided was unknown. We show that broken fork repair initially uses error-prone Pol32-dependent synthesis, but that mutagenic synthesis is limited to within a few kilobases from the break by Mus81 endonuclease and a converging fork. Mus81 suppresses template switches between both homologous sequences and diverged human Alu repetitive elements, highlighting its importance for stability of highly repetitive genomes. We propose that lack of a timely converging fork or Mus81 may propel genome instability observed in cancer.

View Full Text