Report

Atom-interferometry constraints on dark energy

Science  21 Aug 2015:
Vol. 349, Issue 6250, pp. 849-851
DOI: 10.1126/science.aaa8883

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Limiting unknows in the dark side

Our knowledge of the inventory of stuff that makes up our universe amounts to a humbling 5%. The rest consists of either dark energy (~70%) or dark matter (~25%). Using atom interferometry, Hamilton et al. describe the results of experiments that controlled for dark energy screening mechanisms in individual atoms, not bulk matter. Aprile et al. report on an analysis of data taken with the XENON100 detectors aiming to identify dark matter particles directly by monitoring their rare interaction with ordinary matter. In this setup, a large underground tank of liquid xenon forms a target for weakly interacting m assive particles. These combined results set limits on several types of proposed dark matter and dark energy candidates (see the Perspective by Schmiedmayer and Abele).

Science, this issue p. 849, p. 851; see also p. 786

Abstract

If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a “fifth force” between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration.

View Full Text