Report

The microbiota regulates type 2 immunity through RORγt+ T cells

+ See all authors and affiliations

Science  28 Aug 2015:
Vol. 349, Issue 6251, pp. 989-993
DOI: 10.1126/science.aac4263

You are currently viewing the abstract.

View Full Text

Gut microbes make T cells keep the peace

Our guts harbor trillions of microbial inhabitants, some of which regulate the types of immune cells that are present in the gut. For instance, Clostridium species of bacteria induce a type of T cell that promotes tolerance between the host and its microbial contents. Ohnmacht et al. and Sefik et al. characterized a population of gut regulatory T cells in mice, which required gut microbiota to survive. Multiple bacterial species of the microbiota could induce transcription factor–expressing regulatory T cells that helped maintain immune homeostasis. Mice engineered to lack these transcription factors exhibited enhanced susceptibility to colonic inflammation and had elevated amounts of proinflammatory molecules associated with allergies (see the Perspective by Hegazy and Powrie).

Science, this issue pp. 989 and 993

Abstract

Changes to the symbiotic microbiota early in life, or the absence of it, can lead to exacerbated type 2 immunity and allergic inflammations. Although it is unclear how the microbiota regulates type 2 immunity, it is a strong inducer of proinflammatory T helper 17 (TH17) cells and regulatory T cells (Tregs) in the intestine. Here, we report that microbiota-induced Tregs express the nuclear hormone receptor RORγt and differentiate along a pathway that also leads to TH17 cells. In the absence of RORγt+ Tregs, TH2-driven defense against helminths is more efficient, whereas TH2-associated pathology is exacerbated. Thus, the microbiota regulates type 2 responses through the induction of type 3 RORγt+ Tregs and TH17 cells and acts as a key factor in balancing immune responses at mucosal surfaces.

View Full Text