Report

Transmission of innate immune signaling by packaging of cGAMP in viral particles

+ See all authors and affiliations

Science  11 Sep 2015:
Vol. 349, Issue 6253, pp. 1232-1236
DOI: 10.1126/science.aab3628

You are currently viewing the abstract.

View Full Text

Viruses pack antiviral mediators

Viruses often hijack host proteins for their own use, turning host cells into virion-spewing machines. However, Bridgeman et al. and Gentili et al. now report a sneaky way that the host can fight back (see the Perspective by Schoggins). Host cells that expressed the enzyme cGAS, an innate immune receptor that senses cytoplasmic DNA, packaged the cGAS-generated second messenger cGAMP into virions. Virions could then transfer cGAMP to neighboring cells, triggering an antiviral gene program in these newly infected cells. Such transfer of an antiviral mediator may help to speed up the immune response to put the brakes on viral spread.

Science, this issue pp. 1228 and 1232; see also p. 1166

Abstract

Infected cells detect viruses through a variety of receptors that initiate cell-intrinsic innate defense responses. Cyclic guanosine monophosphate (GMP)–adenosine monophosphate (AMP) synthase (cGAS) is a cytosolic sensor for many DNA viruses and HIV-1. In response to cytosolic viral DNA, cGAS synthesizes the second messenger 2′3′-cyclic GMP-AMP (cGAMP), which activates antiviral signaling pathways. We show that in cells producing virus, cGAS-synthesized cGAMP can be packaged in viral particles and extracellular vesicles. Viral particles efficiently delivered cGAMP to target cells. cGAMP transfer by viral particles to dendritic cells activated innate immunity and antiviral defenses. Finally, we show that cell-free murine cytomegalovirus and Modified Vaccinia Ankara virus contained cGAMP. Thus, transfer of cGAMP by viruses may represent a defense mechanism to propagate immune responses to uninfected target cells.

View Full Text