You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Greenlanders' genomes signal a fatty diet
The evolutionary consequences of inhabiting a challenging environment can be seen within the genomes of Greenland Inuit. Fumagalli et al. have found signs of selection for genetic variants in fat metabolism, not just for promoting heat-producing brown fat cells but also for coping with the large amounts of polyunsaturated fatty acids found in their seafood diet (see the Perspective by Tishkoff). Genes under selection in these populations have a strong effect on height and weight of up to 2 cm and 4 kg, respectively, as well as a protective effect on cholesterol and triglyceride levels.
Abstract
The indigenous people of Greenland, the Inuit, have lived for a long time in the extreme conditions of the Arctic, including low annual temperatures, and with a specialized diet rich in protein and fatty acids, particularly omega-3 polyunsaturated fatty acids (PUFAs). A scan of Inuit genomes for signatures of adaptation revealed signals at several loci, with the strongest signal located in a cluster of fatty acid desaturases that determine PUFA levels. The selected alleles are associated with multiple metabolic and anthropometric phenotypes and have large effect sizes for weight and height, with the effect on height replicated in Europeans. By analyzing membrane lipids, we found that the selected alleles modulate fatty acid composition, which may affect the regulation of growth hormones. Thus, the Inuit have genetic and physiological adaptations to a diet rich in PUFAs.











