Report

Observation of chiral edge states with neutral fermions in synthetic Hall ribbons

See allHide authors and affiliations

Science  25 Sep 2015:
Vol. 349, Issue 6255, pp. 1510-1513
DOI: 10.1126/science.aaa8736

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Visualizing edge states in atomic systems

Visualizing edge states in atomic systems Simulating the solid state using ultracold atoms is an appealing research approach. In solids, however, the charged electrons are susceptible to an external magnetic field, which curves their trajectories and makes them skip along the edge of the sample. To observe this phenomenon with cold atoms requires an artificial magnetic field to have a similar effect on the neutral atoms (see the Perspective by Celi and Tarruell). Stuhl et al. obtained skipping orbits with bosonic atoms using a lattice that consisted of an array of atoms in one direction and three internal atomic spin states in the other. In a complementary experiment, Mancini et al. observed similar physics with fermionic atoms.

Science, this issue pp. 1514 and 1510; see also p. 1450

Abstract

Chiral edge states are a hallmark of quantum Hall physics. In electronic systems, they appear as a macroscopic consequence of the cyclotron orbits induced by a magnetic field, which are naturally truncated at the physical boundary of the sample. Here we report on the experimental realization of chiral edge states in a ribbon geometry with an ultracold gas of neutral fermions subjected to an artificial gauge field. By imaging individual sites along a synthetic dimension, encoded in the nuclear spin of the atoms, we detect the existence of the edge states and observe the edge-cyclotron orbits induced during quench dynamics. The realization of fermionic chiral edge states opens the door for edge state interferometry and the study of non-Abelian anyons in atomic systems.

View Full Text