Report

Crystal structure of the metazoan Nup62•Nup58•Nup54 nucleoporin complex

+ See all authors and affiliations

Science  02 Oct 2015:
Vol. 350, Issue 6256, pp. 106-110
DOI: 10.1126/science.aac7420

You are currently viewing the abstract.

View Full Text

Building a gate to the nucleus

Nuclear pore complexes form a gateway between the cytoplasm and the nucleus (see the Perspective by Ullman and Powers). Stuwe et al. combined structural, biochemical, and functional analyses to elucidate the architecture of a six-protein complex that makes up the inner ring of the fungal nuclear pore. This includes a central trimeric complex homologous to the Nup62 complex found in metazoans that is incorporated into the nuclear pore inner-ring complex. Chug et al. report the structure of the metazoan trimeric Nup62 complex. Neither study supports a model in which the pore can dilate and constrict. Instead they suggest a rigid pore in which flexible domains called FG repeats fill the channel and form a barrier that can be traversed by receptors that carry cargos across.

Science, this issue pp. 56 and 106; see also p. 33

Abstract

Nuclear pore complexes (NPCs) conduct nucleocytoplasmic transport and gain transport selectivity through nucleoporin FG domains. Here, we report a structural analysis of the FG Nup62•58•54 complex, which is a crucial component of the transport system. It comprises a ≈13 nanometer-long trimerization interface with an unusual 2W3F coil, a canonical heterotrimeric coiled coil, and a kink that enforces a compact six-helix bundle. Nup54 also contains a ferredoxin-like domain. We further identified a heterotrimeric Nup93-binding module for NPC anchorage. The quaternary structure alternations in the Nup62 complex, which were previously proposed to trigger a general gating of the NPC, are incompatible with the trimer structure. We suggest that the highly elongated Nup62 complex projects barrier-forming FG repeats far into the central NPC channel, supporting a barrier that guards the entire cross section.

View Full Text