Report

Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness

+ See all authors and affiliations

Science  09 Oct 2015:
Vol. 350, Issue 6257, pp. 217-221
DOI: 10.1126/science.aab3369

You are currently viewing the abstract.

View Full Text

Orchestrating a viral takeover

For some pathogenic viruses, outbreaks occur when a new viral strain emerges and displaces the endemic strain. How such a takeover occurs at a molecular level, however, remains an open question. Manokaran et al. examined one example, the emergence of a new clade of dengue virus (DENV) that caused an outbreak in Puerto Rico in 1994. The epidemic strain produced elevated amounts of subgenomic flavivirus RNA (sfRNA), a viral noncoding RNA, relative to amounts of genomic viral RNA. sfRNA bound to and inhibited TRIM25, a protein important for activating the host's antiviral response, and so by reducing host immunity was able to increase its own fitness.

Science, this issue p. 217

Abstract

The global spread of dengue virus (DENV) infections has increased viral genetic diversity, some of which appears associated with greater epidemic potential. The mechanisms governing viral fitness in epidemiological settings, however, remain poorly defined. We identified a determinant of fitness in a foreign dominant (PR-2B) DENV serotype 2 (DENV-2) clade, which emerged during the 1994 epidemic in Puerto Rico and replaced an endemic (PR-1) DENV-2 clade. The PR-2B DENV-2 produced increased levels of subgenomic flavivirus RNA (sfRNA) relative to genomic RNA during replication. PR-2B sfRNA showed sequence-dependent binding to and prevention of tripartite motif 25 (TRIM25) deubiquitylation, which is critical for sustained and amplified retinoic acid–inducible gene 1 (RIG-I)–induced type I interferon expression. Our findings demonstrate a distinctive viral RNA–host protein interaction to evade the innate immune response for increased epidemiological fitness.

View Full Text