Report

A near–quantum-limited Josephson traveling-wave parametric amplifier

See allHide authors and affiliations

Science  16 Oct 2015:
Vol. 350, Issue 6258, pp. 307-310
DOI: 10.1126/science.aaa8525

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Stringing together a powerful amplifier

Amplifying microwave signals with high gain and across a broad range of frequencies is crucial in solid-state quantum information processing (QIP). Achieving broadband operation is especially tricky. Macklin et al. engineered an amplifier that contains a long chain of so-called Josephson junctions (see the Perspective by Cleland). The amplifier exhibited high gain over a gigahertz-sized bandwidth and was able to perform high-fidelity qubit readout. Because the amplifier will be capable of reading out as many as 20 qubits simultaneously, it may help to scale up QIP protocols.

Science, this issue p. 307; see also p. 280

Abstract

Detecting single–photon level signals—carriers of both classical and quantum information—is particularly challenging for low-energy microwave frequency excitations. Here we introduce a superconducting amplifier based on a Josephson junction transmission line. Unlike current standing-wave parametric amplifiers, this traveling wave architecture robustly achieves high gain over a bandwidth of several gigahertz with sufficient dynamic range to read out 20 superconducting qubits. To achieve this performance, we introduce a subwavelength resonant phase-matching technique that enables the creation of nonlinear microwave devices with unique dispersion relations. We benchmark the amplifier with weak measurements, obtaining a high quantum efficiency of 75% (70% including noise added by amplifiers following the Josephson amplifier). With a flexible design based on compact lumped elements, this Josephson amplifier has broad applicability to microwave metrology and quantum optics.

View Full Text