Report

The Atlantic Multidecadal Oscillation without a role for ocean circulation

See allHide authors and affiliations

Science  16 Oct 2015:
Vol. 350, Issue 6258, pp. 320-324
DOI: 10.1126/science.aab3980

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Ocean circulation changes not needed

What causes the pattern of sea surface temperature change that is seen in the North Atlantic Ocean? This naturally occurring quasi-cyclical variation, known as the Atlantic Multidecadal Oscillation (AMO), affects weather and climate. Some have suggested that the AMO is a consequence of variable large-scale ocean circulation. Clement et al. suggest otherwise. They find that the pattern of AMO variability can be produced in a model that does not include ocean circulation changes, but only the effects of changes in air temperatures and winds.

Science, this issue p. 320

Abstract

The Atlantic Multidecadal Oscillation (AMO) is a major mode of climate variability with important societal impacts. Most previous explanations identify the driver of the AMO as the ocean circulation, specifically the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the main features of the observed AMO are reproduced in models where the ocean heat transport is prescribed and thus cannot be the driver. Allowing the ocean circulation to interact with the atmosphere does not significantly alter the characteristics of the AMO in the current generation of climate models. These results suggest that the AMO is the response to stochastic forcing from the mid-latitude atmospheric circulation, with thermal coupling playing a role in the tropics. In this view, the AMOC and other ocean circulation changes would be largely a response to, not a cause of, the AMO.

View Full Text