Research Article

Stable recombination hotspots in birds

+ See all authors and affiliations

Science  20 Nov 2015:
Vol. 350, Issue 6263, pp. 928-932
DOI: 10.1126/science.aad0843

You are currently viewing the abstract.

View Full Text

Recombination: The birds and the yeast

Apes and mice have a specific gene, PRDM9, that is associated with genomic regions with high rates of recombination, called hotspots. In species with PRDM9, hotspots move rapidly within the genome, varying among populations and closely related species (see the Perspective by Lichten). To investigate recombination hotspots in species lacking PRDM9, Singhal et al. examined bird genomes, which lack a PRDM9 gene. They looked closely at the genomes of finch species and found that recombination was localized to the promoter regions of genes and highly conserved over millions of years. Similarly, Lam and Keeney examined recombination localization within yeast, which also lacks PRDM9. They found a similar more-or-less fixed pattern of hotspots. Thus, recombination in species lacking a PRDM9 gene shows similar patterns of hotspot localization and evolution.

Science, this issue p. 913, p. 928; see also p. 932


The DNA-binding protein PRDM9 has a critical role in specifying meiotic recombination hotspots in mice and apes, but it appears to be absent from other vertebrate species, including birds. To study the evolution and determinants of recombination in species lacking the gene that encodes PRDM9, we inferred fine-scale genetic maps from population resequencing data for two bird species: the zebra finch, Taeniopygia guttata, and the long-tailed finch, Poephila acuticauda. We found that both species have recombination hotspots, which are enriched near functional genomic elements. Unlike in mice and apes, most hotspots are shared between the two species, and their conservation seems to extend over tens of millions of years. These observations suggest that in the absence of PRDM9, recombination targets functional features that both enable access to the genome and constrain its evolution.

View Full Text

Related Content