Research Article

Nonparadoxical evolutionary stability of the recombination initiation landscape in yeast

See allHide authors and affiliations

Science  20 Nov 2015:
Vol. 350, Issue 6263, pp. 932-937
DOI: 10.1126/science.aad0814

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Recombination: The birds and the yeast

Apes and mice have a specific gene, PRDM9, that is associated with genomic regions with high rates of recombination, called hotspots. In species with PRDM9, hotspots move rapidly within the genome, varying among populations and closely related species (see the Perspective by Lichten). To investigate recombination hotspots in species lacking PRDM9, Singhal et al. examined bird genomes, which lack a PRDM9 gene. They looked closely at the genomes of finch species and found that recombination was localized to the promoter regions of genes and highly conserved over millions of years. Similarly, Lam and Keeney examined recombination localization within yeast, which also lacks PRDM9. They found a similar more-or-less fixed pattern of hotspots. Thus, recombination in species lacking a PRDM9 gene shows similar patterns of hotspot localization and evolution.

Science, this issue p. 913, p. 928; see also p. 932


The nonrandom distribution of meiotic recombination shapes heredity and genetic diversification. Theoretically, hotspots—favored sites of recombination initiation—either evolve rapidly toward extinction or are conserved, especially if they are chromosomal features under selective constraint, such as promoters. We tested these theories by comparing genome-wide recombination initiation maps from widely divergent Saccharomyces species. We find that hotspots frequently overlap with promoters in the species tested, and consequently, hotspot positions are well conserved. Remarkably, the relative strength of individual hotspots is also highly conserved, as are larger-scale features of the distribution of recombination initiation. This stability, not predicted by prior models, suggests that the particular shape of the yeast recombination landscape is adaptive and helps in understanding evolutionary dynamics of recombination in other species.

View Full Text