Research Article

Architecture of human mTOR complex 1

Science  01 Jan 2016:
Vol. 351, Issue 6268, pp. 48-52
DOI: 10.1126/science.aaa3870

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


From sensing leucine to metabolic control

The mTORC1 protein kinase complex plays central roles in regulating cell growth and metabolism and is implicated in common human diseases such as diabetes and cancer. The level of the amino acid leucine tells an organism a lot about its physiological state, including how much food is available, how much insulin is going to be needed, and whether new muscle mass can be made (see the Perspective by Buel and Blenis). Wolfson et al. identified a biochemical sensor of leucine, Sestrin2, which connects the concentration of leucine to the control of organismal metabolism and growth. When leucine bound to Sestrin2, it was released from a complex with the mTORC1 regulatory factor GATOR2, activating the mTORC1 complex. Saxton et al. describe the crystal structure of Sestrin2 and show how it specifically detects leucine. Aylett et al. determined the structure of human mTORC1 by cryoelectron microscopy and the crystal structure of a regulatory subunit, Raptor. The results reveal the structural basis for the function and intricate regulation of this important enzyme, which is also a strategic drug target.

Science, this issue p. 43, p. 48, p. 53; see also p. 25

Abstract

Target of rapamycin (TOR), a conserved protein kinase and central controller of cell growth, functions in two structurally and functionally distinct complexes: TORC1 and TORC2. Dysregulation of mammalian TOR (mTOR) signaling is implicated in pathologies that include diabetes, cancer, and neurodegeneration. We resolved the architecture of human mTORC1 (mTOR with subunits Raptor and mLST8) bound to FK506 binding protein (FKBP)–rapamycin, by combining cryo–electron microscopy at 5.9 angstrom resolution with crystallographic studies of Chaetomium thermophilum Raptor at 4.3 angstrom resolution. The structure explains how FKBP-rapamycin and architectural elements of mTORC1 limit access to the recessed active site. Consistent with a role in substrate recognition and delivery, the conserved amino-terminal domain of Raptor is juxtaposed to the kinase active site.

View Full Text