Research Article

Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway

Science  01 Jan 2016:
Vol. 351, Issue 6268, pp. 53-58
DOI: 10.1126/science.aad2087

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


From sensing leucine to metabolic control

The mTORC1 protein kinase complex plays central roles in regulating cell growth and metabolism and is implicated in common human diseases such as diabetes and cancer. The level of the amino acid leucine tells an organism a lot about its physiological state, including how much food is available, how much insulin is going to be needed, and whether new muscle mass can be made (see the Perspective by Buel and Blenis). Wolfson et al. identified a biochemical sensor of leucine, Sestrin2, which connects the concentration of leucine to the control of organismal metabolism and growth. When leucine bound to Sestrin2, it was released from a complex with the mTORC1 regulatory factor GATOR2, activating the mTORC1 complex. Saxton et al. describe the crystal structure of Sestrin2 and show how it specifically detects leucine. Aylett et al. determined the structure of human mTORC1 by cryoelectron microscopy and the crystal structure of a regulatory subunit, Raptor. The results reveal the structural basis for the function and intricate regulation of this important enzyme, which is also a strategic drug target.

Science, this issue p. 43, p. 48, p. 53; see also p. 25

Abstract

Eukaryotic cells coordinate growth with the availability of nutrients through the mechanistic target of rapamycin complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag guanosine triphosphatases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. Here we present the 2.7 angstrom crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucine leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. These results provide a structural mechanism of amino acid sensing by the mTORC1 pathway.

View Full Text