Report

The fate of photons absorbed by phytoplankton in the global ocean

Science  15 Jan 2016:
Vol. 351, Issue 6270, pp. 264-267
DOI: 10.1126/science.aab2213

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Using solar energy suboptimally

How efficient are phytoplankton at converting sunlight into the products of photosynthesis? The two other pathways that that absorbed energy can take are emission back to the environment by fluorescence or conversion to heat. Lin et al. measured phytoplankton fluorescence lifetimes in the laboratory and combined them with satellite measurements of variable chlorophyll fluorescence. Combined, they determined the quantum yields of photochemistry and fluorescence in four ocean basins. Approximately 60% of absorbed solar energy is converted to heat, a figure 50% higher than has been determined for conditions of optimal growth.

Science, this issue p. 264

Abstract

Solar radiation absorbed by marine phytoplankton can follow three possible paths. By simultaneously measuring the quantum yields of photochemistry and chlorophyll fluorescence in situ, we calculate that, on average, ~60% of absorbed photons are converted to heat, only 35% are directed toward photochemical water splitting, and the rest are reemitted as fluorescence. The spatial pattern of fluorescence yields and lifetimes strongly suggests that photochemical energy conversion is physiologically limited by nutrients. Comparison of in situ fluorescence lifetimes with satellite retrievals of solar-induced fluorescence yields suggests that the mean values of the latter are generally representative of the photophysiological state of phytoplankton; however, the signal-to-noise ratio is unacceptably low in extremely oligotrophic regions, which constitute 30% of the open ocean.

View Full Text