Archean upper crust transition from mafic to felsic marks the onset of plate tectonics

Science  22 Jan 2016:
Vol. 351, Issue 6271, pp. 372-375
DOI: 10.1126/science.aad5513

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution

New crustal clues from old rocks

The ghost of continental crust long eroded away may exist in certain element ratios found in Archean rocks. Tang et al. used Ni/Co and Cr/Zn ratios as a proxy for the magnesium oxide that long ago weathered away in Earth's oldest rocks. This allowed a reconstruction of rock composition, which appears to be very different from that of the crust today. The shift to contemporary crust composition occurred after the Archean era, suggesting the onset of plate tectonics.

Science, this issue p. 372


The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago.

View Full Text