Report

Transmutable nanoparticles with reconfigurable surface ligands

Science  05 Feb 2016:
Vol. 351, Issue 6273, pp. 579-582
DOI: 10.1126/science.aad2212

You are currently viewing the abstract.

View Full Text

Controlled colloid bonding using DNA

Colloidal particles can act as analogs of atoms for studying crystallization and packing behavior, but they don't naturally bond together the way atoms do. Short strands of DNA are one versatile way to link together colloidal particles (see the Perspective by Tao). Kim et al. designed a series of gold colloids with DNA ligands that reversibly bound to or released neighboring particles via DNA strands that opened or closed hairpin loops. Liu et al. devised a set of DNA strands that pack into origami structures. Inside each structure were strands that cage a gold nanoparticle. These were further linked to other uncaged nanoparticles to assemble a diamond-like structure. Changing the strand design yielded a wide range of sparsely packed colloidal crystals.

Science, this issue p. 561, p. 579; see also p. 582

Abstract

Unlike conventional inorganic materials, biological systems are exquisitely adapted to respond to their surroundings. Proteins and other biological molecules can process a complex set of chemical binding events as informational inputs and respond accordingly via a change in structure and function. We applied this principle to the design and synthesis of inorganic materials by preparing nanoparticles with reconfigurable surface ligands, where interparticle bonding can be programmed in response to specific chemical cues in a dynamic manner. As a result, a nascent set of “transmutable nanoparticles” can be driven to crystallize along multiple thermodynamic trajectories, resulting in rational control over the phase and time evolution of nanoparticle-based matter.

View Full Text