Report

Electrical switching of an antiferromagnet

Science  05 Feb 2016:
Vol. 351, Issue 6273, pp. 587-590
DOI: 10.1126/science.aab1031

You are currently viewing the abstract.

View Full Text

Manipulating a stubborn magnet

Spintronics is an alternative to conventional electronics, based on using the electron's spin rather than its charge. Spintronic devices, such as magnetic memory, have traditionally used ferromagnetic materials to encode the 1's and 0's of the binary code. A weakness of this approach—that strong magnetic fields can erase the encoded information—could be avoided by using antiferromagnets instead of ferromagnets. But manipulating the magnetic ordering of antiferromagnets is tricky. Now, Wadley et al. have found a way (see the Perspective by Marrows). Running currents along specific directions in the thin films of the antiferromagnetic compound CuMnAs reoriented the magnetic domains in the material.

Science, this issue p. 587; see also p. 558

Abstract

Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 106 ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics.

View Full Text