Report

A decade of sea level rise slowed by climate-driven hydrology

Science  12 Feb 2016:
Vol. 351, Issue 6274, pp. 699-703
DOI: 10.1126/science.aad8386

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


By land or by sea

How much of an effect does terrestrial groundwater storage have on sea-level rise? Reager et al. used gravity measurements made between 2002 and 2014 by NASA's Gravity Recovery And Climate Experiment (GRACE) satellites to quantify variations in groundwater storage. Combining those data with estimates of mass loss by glaciers revealed groundwater's impact on sea-level change. Net groundwater storage has been increasing, and the greatest regional changes, both positive and negative, are associated with climate-driven variability in precipitation. Thus, groundwater storage has slowed the rate of recent sea-level rise by roughly 15%.

Science, this issue p. 699

Abstract

Climate-driven changes in land water storage and their contributions to sea level rise have been absent from Intergovernmental Panel on Climate Change sea level budgets owing to observational challenges. Recent advances in satellite measurement of time-variable gravity combined with reconciled global glacier loss estimates enable a disaggregation of continental land mass changes and a quantification of this term. We found that between 2002 and 2014, climate variability resulted in an additional 3200 ± 900 gigatons of water being stored on land. This gain partially offset water losses from ice sheets, glaciers, and groundwater pumping, slowing the rate of sea level rise by 0.71 ± 0.20 millimeters per year. These findings highlight the importance of climate-driven changes in hydrology when assigning attribution to decadal changes in sea level.

View Full Text