Report

Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling

Science  19 Feb 2016:
Vol. 351, Issue 6275, pp. 849-854
DOI: 10.1126/science.aab3103

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Glial cell properties dictated by neurons

Neurons in the brain coexist with astrocytes, a type of glial cell, which help support many functions of their neighboring nerve cells. Farmer et al. now show that the support goes both ways (see the Perspective by Stevens and Muthukumar). They explored the influence of neurons on two specialized types of astrocytes in the mouse cerebellar cortex. The neurons produced the morphogen known as Sonic Hedgehog. Hedgehog signaling adjusted distinctive gene expression within the two astrocyte cell types. Thus, mature neurons appear to promote and maintain specific properties of associated astrocytes.

Science, this issue p. 849; see also p. 813

Abstract

Astrocytes are specialized and heterogeneous cells that contribute to central nervous system function and homeostasis. However, the mechanisms that create and maintain differences among astrocytes and allow them to fulfill particular physiological roles remain poorly defined. We reveal that neurons actively determine the features of astrocytes in the healthy adult brain and define a role for neuron-derived sonic hedgehog (Shh) in regulating the molecular and functional profile of astrocytes. Thus, the molecular and physiological program of astrocytes is not hardwired during development but, rather, depends on cues from neurons that drive and sustain their specialized properties.

View Full Text