Research Article

The atmosphere of Pluto as observed by New Horizons

Science  18 Mar 2016:
Vol. 351, Issue 6279,
DOI: 10.1126/science.aad8866

You are currently viewing the abstract.

View Full Text

New Horizons unveils the Pluto system

In July 2015, the New Horizons spacecraft flew through the Pluto system at high speed, humanity's first close look at this enigmatic system on the outskirts of our solar system. In a series of papers, the New Horizons team present their analysis of the encounter data downloaded so far: Moore et al. present the complex surface features and geology of Pluto and its large moon Charon, including evidence of tectonics, glacial flow, and possible cryovolcanoes. Grundy et al. analyzed the colors and chemical compositions of their surfaces, with ices of H2O, CH4, CO, N2, and NH3 and a reddish material which may be tholins. Gladstone et al. investigated the atmosphere of Pluto, which is colder and more compact than expected and hosts numerous extensive layers of haze. Weaver et al. examined the small moons Styx, Nix, Kerberos, and Hydra, which are irregularly shaped, fast-rotating, and have bright surfaces. Bagenal et al. report how Pluto modifies its space environment, including interactions with the solar wind and a lack of dust in the system. Together, these findings massively increase our understanding of the bodies in the outer solar system. They will underpin the analysis of New Horizons data, which will continue for years to come.

Science, this issue pp. 1284, 10.1126/science.aad9189, 10.1126/science.aad8866, 10.1126/science.aae0030, & 10.1126/science.aad9045

Structured Abstract


For several decades, telescopic observations have shown that Pluto has a complex and intriguing atmosphere. But too little has been known to allow a complete understanding of its global structure and evolution. Major goals of the New Horizons mission included the characterization of the structure and composition of Pluto’s atmosphere, as well as its escape rate, and to determine whether Charon has a measurable atmosphere.


The New Horizons spacecraft included several instruments that observed Pluto’s atmosphere, primarily (i) the Radio Experiment (REX) instrument, which produced near-surface pressure and temperature profiles; (ii) the Alice ultraviolet spectrograph, which gave information on atmospheric composition; and (iii) the Long Range Reconnaissance Imager (LORRI) and Multispectral Visible Imaging Camera (MVIC), which provided images of Pluto’s hazes. Together, these instruments have provided data that allow an understanding of the current state of Pluto’s atmosphere and its evolution.


The REX radio occultation determined Pluto’s surface pressure and found a strong temperature inversion, both of which are generally consistent with atmospheric profiles retrieved from Earth-based stellar occultation measurements. The REX data showed near-symmetry between the structure at ingress and egress, as expected from sublimation driven dynamics, so horizontal winds are expected to be weak. The shallow near-surface boundary layer observed at ingress may arise directly from sublimation.

The Alice solar occultation showed absorption by methane and nitrogen and revealed the presence of the photochemical products acetylene and ethylene. The observed nitrogen opacity at high altitudes was lower than expected, which is consistent with a cold upper atmosphere. Such low temperatures imply an additional, but as yet unidentified, cooling agent.

A globally extensive haze extending to high altitudes, and with numerous embedded thin layers, is seen in the New Horizons images. The haze has a bluish color, suggesting a composition of very small particles. The observed scattering properties of the haze are consistent with a tholin-like composition. Buoyancy waves generated by winds flowing over orography can produce vertically propagating compression and rarefaction waves that may be related to the narrow haze layers.

Pluto’s cold upper atmosphere means atmospheric escape must occur via slow thermal Jeans’ escape. The inferred escape rate of nitrogen is ~10,000 times slower than predicted, whereas that of methane is about the same as predicted. The low nitrogen loss rate is consistent with an undetected Charon atmosphere but possibly inconsistent with sublimation/erosional features seen on Pluto’s surface, so that past escape rates may have been much larger at times. Capture of escaping methane and photochemical products by Charon, and subsequent surface chemical reactions, may contribute to the reddish color of its north pole.


New Horizons observations have revolutionized our understanding of Pluto’s atmosphere. The observations revealed major surprises, such as the unexpectedly cold upper atmosphere and the globally extensive haze layers. The cold upper atmosphere implies much lower escape rates of volatiles from Pluto than predicted and so has important implications for the volatile recycling and the long-term evolution of Pluto’s atmosphere.

MVIC image of haze layers above Pluto’s limb.

About 20 haze layers are seen from a phase angle of 147°. The layers typically extend horizontally over hundreds of kilometers but are not exactly horizontal. For example, white arrows on the left indicate a layer ~5 km above the surface, which has descended to the surface at the right.


Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto’s atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto’s atmosphere to space. It is unclear whether the current state of Pluto’s atmosphere is representative of its average state—over seasonal or geologic time scales.

    View Full Text