Research Article

Pluto’s interaction with its space environment: Solar wind, energetic particles, and dust

Science  18 Mar 2016:
Vol. 351, Issue 6279,
DOI: 10.1126/science.aad9045

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution

New Horizons unveils the Pluto system

In July 2015, the New Horizons spacecraft flew through the Pluto system at high speed, humanity's first close look at this enigmatic system on the outskirts of our solar system. In a series of papers, the New Horizons team present their analysis of the encounter data downloaded so far: Moore et al. present the complex surface features and geology of Pluto and its large moon Charon, including evidence of tectonics, glacial flow, and possible cryovolcanoes. Grundy et al. analyzed the colors and chemical compositions of their surfaces, with ices of H2O, CH4, CO, N2, and NH3 and a reddish material which may be tholins. Gladstone et al. investigated the atmosphere of Pluto, which is colder and more compact than expected and hosts numerous extensive layers of haze. Weaver et al. examined the small moons Styx, Nix, Kerberos, and Hydra, which are irregularly shaped, fast-rotating, and have bright surfaces. Bagenal et al. report how Pluto modifies its space environment, including interactions with the solar wind and a lack of dust in the system. Together, these findings massively increase our understanding of the bodies in the outer solar system. They will underpin the analysis of New Horizons data, which will continue for years to come.

Science, this issue pp. 1284, 10.1126/science.aad9189, 10.1126/science.aad8866, 10.1126/science.aae0030, & 10.1126/science.aad9045

Structured Abstract


The scientific objectives of NASA’s New Horizons mission include quantifying the rate at which atmospheric gases are escaping Pluto and describing its interaction with the surrounding space environment. The two New Horizons instruments that measure charged particles are the Solar Wind Around Pluto (SWAP) instrument and the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. The Venetia Burney Student Dust Counter (SDC) counts the micrometer-sized dust grains that hit the detectors mounted on the ram direction of the spacecraft. This paper describes preliminary results from these three instruments when New Horizons flew past Pluto in July 2015 at a distance of 32.9 astronomical units (AU) from the Sun.


Initial studies of the solar wind interaction with Pluto’s atmosphere suggested that the extent of the interaction depends on whether the atmospheric escape flux is strong (producing a comet-like interaction, where the interaction region is dominated by ion pick-up and is many times larger than the object) or weak (producing a Mars-like interaction dominated by ionospheric currents with limited upstream pick-up and where the scale size is comparable to the object). Before the New Horizons flyby, the estimates of the atmospheric escape rate ranged from as low as 1.5 × 1025 molecules s–1 to as high as 2 × 1028 molecules s–1. Combining these wide-ranging predictions of atmospheric escape rates with Voyager and New Horizons observations of extensive variability of the solar wind at 33 AU produced estimates of the scale of the interaction region that spanned all the way from 7 to 1000 Pluto radii (RP).


At the time of the flyby, SWAP measured the solar wind conditions near Pluto to be nearly constant and stronger than usual. The abnormally high solar wind density and associated pressures for this distance are likely due to a relatively strong traveling interplanetary shock that passed over the spacecraft 5 days earlier. Heavy ions picked up sunward from Pluto should mass-load and slow the solar wind. However, there is no evidence of such solar wind slowing in the SWAP data taken as near as ~20 RP inbound, which suggests that very few atmospheric molecules are escaping upstream and becoming ionized. The reorientation of the spacecraft to enable imaging of the Pluto system meant that both the SWAP and PEPSSI instruments were turned away from the solar direction, thus complicating our analysis of the particle data. Nevertheless, when the spacecraft was ~10 RP from Pluto, SWAP data indicated that the solar wind had slowed by ~20%. We use these measurements to estimate a distance of ~6 RP for the 20% slowing location directly upstream of Pluto. At this time, PEPSSI detected an enhancement of ions with energies in the kilo–electron volt range. The SDC, which measures grains with radii >1.4 µm, detected one candidate impact in ±5 days around its closest approach, indicating a dust density estimate of n = 1.2 km–3, with a 90% confidence level range of 0.6 < n < 4.6 km–3.


New Horizons’s particle instruments revealed an interaction region confined sunward of Pluto to within ~6 RP. The surprisingly small size is consistent with a reduced atmospheric escape rate of 6 × 1025 CH4 molecules s–1, as well as a particularly high solar wind flux due to a passing compression region. This region is similar in scale to the solar wind interaction with Mars’s escaping atmosphere. Beyond Pluto, the disturbance persists to distances greater than 400 RP downstream.

Interaction of the solar wind with Pluto’s extended atmosphere.

Protons and electrons streaming from the Sun at ~400 km s–1 are slowed and deflected around Pluto because of a combination of ionization of Pluto’s atmosphere and electrical currents induced in Pluto’s ionosphere.



The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region’s surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons’ closest approach, indicating an upper limit of <4.6 kilometers–3 for the dust density in the Pluto system.

    View Full Text

    Related Content