Exploiting the colloidal nanocrystal library to construct electronic devices

See allHide authors and affiliations

Science  08 Apr 2016:
Vol. 352, Issue 6282, pp. 205-208
DOI: 10.1126/science.aad0371

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Assembling nanocrystal devices

A wide range of materials can be grown as high-quality colloidal nanocrystals, with properties spanning from conductors to semiconductors and insulators. Although these materials have been included in electronic devices, they usually only form a single component within the device. Choi et al. took a variety of solution-processable colloidal nanocrystals to form all of the device components. Through the development of the right materials, interfaces, and processing steps, they constructed an all-colloid field effect transistor.

Science, this issue p. 205


Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high–dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second.

View Full Text