Homogeneously dispersed multimetal oxygen-evolving catalysts

+ See all authors and affiliations

Science  15 Apr 2016:
Vol. 352, Issue 6283, pp. 333-337
DOI: 10.1126/science.aaf1525

You are currently viewing the abstract.

View Full Text

Modulating metal oxides

The more difficult step in fuel cells and water electrolysis is the oxygen evolution reaction. The search for earth-abundant materials to replace noble metals for this reaction often turns to oxides of three-dimensional metals such as iron. Zhang et al. show that the applied voltages needed to drive this reaction are reduced for iron-cobalt oxides by the addition of tungsten. The addition of tungsten favorably modulates the electronic structure of the oxyhydroxide. A key development is to keep the metals well mixed and avoid the formation of separate phases.

Science, this issue p. 333


Earth-abundant first-row (3d) transition metal–based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials substantially above thermodynamic requirements. Density functional theory suggested that non-3d high-valency metals such as tungsten can modulate 3d metal oxides, providing near-optimal adsorption energies for OER intermediates. We developed a room-temperature synthesis to produce gelled oxyhydroxides materials with an atomically homogeneous metal distribution. These gelled FeCoW oxyhydroxides exhibit the lowest overpotential (191 millivolts) reported at 10 milliamperes per square centimeter in alkaline electrolyte. The catalyst shows no evidence of degradation after more than 500 hours of operation. X-ray absorption and computational studies reveal a synergistic interplay between tungsten, iron, and cobalt in producing a favorable local coordination environment and electronic structure that enhance the energetics for OER.

View Full Text