Empirical evidence of contrasting soil moisture–precipitation feedbacks across the United States

See allHide authors and affiliations

Science  13 May 2016:
Vol. 352, Issue 6287, pp. 825-828
DOI: 10.1126/science.aaa7185

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

The effects of rainfall on rainfall

Soil moisture, which is controlled in part by past rainfall, can affect the probability of future rainfall over large areas. This is because the water contained in soils helps determine how sunlight is converted into latent heat (evaporation) and sensible heat (which increases overlying air temperatures). Tuttle and Salvucci used data collected for the contiguous United States over 10 years to study this relationship. The feedback between soil moisture and rainfall is generally positive in the western United States but negative in the east. This regional dependence could be a function of large-scale differences in aridity.

Science, this issue p. 825


Soil moisture influences fluxes of heat and moisture originating at the land surface, thus altering atmospheric humidity and temperature profiles. However, empirical and modeling studies disagree on how this affects the propensity for precipitation, mainly owing to the difficulty in establishing causality. We use Granger causality to estimate the relationship between soil moisture and occurrence of subsequent precipitation over the contiguous United States using remotely sensed soil moisture and gauge-based precipitation observations. After removing potential confounding effects of daily persistence, and seasonal and interannual variability in precipitation, we find that soil moisture anomalies significantly influence rainfall probabilities over 38% of the area with a median factor of 13%. The feedback is generally positive in the west and negative in the east, suggesting dependence on regional aridity.

View Full Text