Report

A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway

See allHide authors and affiliations

Science  13 May 2016:
Vol. 352, Issue 6287, pp. 833-836
DOI: 10.1126/science.aad2808

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Making RNA in the prebiotic world

The RNA World hypothesis posits that RNA was one of the first self-replicating molecules leading to the origin of life. The nucleotide bases of RNA—A, U, C, and G—are chemically complex, and it has been unclear how the large purine bases A and G might have arisen on prebiotic Earth. Becker et al. show that the A and G bases can be synthesized easily and in high yield from prebiotically reasonable precursors, lending further support to the RNA World hypothesis.

Science, this issue p. 833

Abstract

The origin of life is believed to have started with prebiotic molecules reacting along unidentified pathways to produce key molecules such as nucleosides. To date, a single prebiotic pathway to purine nucleosides had been proposed. It is considered to be inefficient due to missing regioselectivity and low yields. We report that the condensation of formamidopyrimidines (FaPys) with sugars provides the natural N-9 nucleosides with extreme regioselectivity and in good yields (60%). The FaPys are available from formic acid and aminopyrimidines, which are in turn available from prebiotic molecules that were also detected during the Rosetta comet mission. This nucleoside formation pathway can be fused to sugar-forming reactions to produce pentosides, providing a plausible scenario of how purine nucleosides may have formed under prebiotic conditions.

View Full Text