PerspectiveRobotics

Learning from nature how to land aerial robots

See allHide authors and affiliations

Science  20 May 2016:
Vol. 352, Issue 6288, pp. 895-896
DOI: 10.1126/science.aaf6605

You are currently viewing the summary.

View Full Text

Summary

One of the main challenges for aerial robots is the high-energy consumption of powered flight, which limits flight times to typically only tens of minutes for systems below 2 kg in weight (1). This limitation greatly reduces their utility for sensing and inspection tasks, where longer hovering times would be beneficial. Perching onto structures can save energy and maintain a high, stable observation or resting position, but it requires a coordination of flight dynamics and some means of attaching to the structure. Birds and insects have mastered the ability to perch successfully and have inspired perching robots at various sizes. On page 978 of this issue, Graule et al. (2) describe a perching robotic insect that represents the smallest flying robot platform that can autonomously attach to surfaces. At a mass of only 100 mg, it combines advanced flight control with adaptive mechanical dampers and electro-adhesion to perch on a variety of natural and artificial structures.