A Schrödinger cat living in two boxes

See allHide authors and affiliations

Science  27 May 2016:
Vol. 352, Issue 6289, pp. 1087-1091
DOI: 10.1126/science.aaf2941

You are currently viewing the abstract.

View Full Text

Quantum cats here and there

The story of Schrödinger's cat being hidden away in a box and being both dead and alive is often invoked to illustrate the how peculiar the quantum world can be. On a twist of the dead/alive behavior, Wang et al. now show that the cat can be in two separate locations at the same time. Constructing their cat from coherent microwave photons, they show that the state of the “electromagnetic cat” can be shared by two separated cavities. Going beyond common-sense absurdities of the classical world, the ability to share quantum states in different locations could be a powerful resource for quantum information processing.

Science, this issue p. 1087


Quantum superpositions of distinct coherent states in a single-mode harmonic oscillator, known as “cat states,” have been an elegant demonstration of Schrödinger’s famous cat paradox. Here, we realize a two-mode cat state of electromagnetic fields in two microwave cavities bridged by a superconducting artificial atom, which can also be viewed as an entangled pair of single-cavity cat states. We present full quantum state tomography of this complex cat state over a Hilbert space exceeding 100 dimensions via quantum nondemolition measurements of the joint photon number parity. The ability to manipulate such multicavity quantum states paves the way for logical operations between redundantly encoded qubits for fault-tolerant quantum computation and communication.

View Full Text