Report

TT-seq maps the human transient transcriptome

+ See all authors and affiliations

Science  03 Jun 2016:
Vol. 352, Issue 6290, pp. 1225-1228
DOI: 10.1126/science.aad9841

You are currently viewing the abstract.

View Full Text

TT-Seq maps a transient transcriptome

RNA expression is related to protein abundance and cellular function. However, the amounts of RNA generated at any one time-point have been difficult to determine. Schwalb et al. developed a method, transient transcriptome sequencing (TT-Seq), to collect and sequence all RNA segments synthesized over 5 minutes. Because 5 minutes is not long enough to fully degrade even the most transient RNA, this method can detect the synthesis of most RNA without bias. Applying this method to human K562 cells, TT-Seq detected thousands of noncoding transcripts, providing a snapshot of RNA synthesis rates and RNA half-lives, and full-length maps of short-lived RNAs such as enhancers and short intergenic noncoding RNAs.

Science, this issue p. 1225

Abstract

Pervasive transcription of the genome produces both stable and transient RNAs. We developed transient transcriptome sequencing (TT-seq), a protocol that uniformly maps the entire range of RNA-producing units and estimates rates of RNA synthesis and degradation. Application of TT-seq to human K562 cells recovers stable messenger RNAs and long intergenic noncoding RNAs and additionally maps transient enhancer, antisense, and promoter-associated RNAs. TT-seq analysis shows that enhancer RNAs are short-lived and lack U1 motifs and secondary structure. TT-seq also maps transient RNA downstream of polyadenylation sites and uncovers sites of transcription termination; we found, on average, four transcription termination sites, distributed in a window with a median width of ~3300 base pairs. Termination sites coincide with a DNA motif associated with pausing of RNA polymerase before its release from the genome.

View Full Text