Report

S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization

+ See all authors and affiliations

Science  08 Jul 2016:
Vol. 353, Issue 6295, pp. 166-169
DOI: 10.1126/science.aaf4009

You are currently viewing the abstract.

View Full Text

Location, location, S-acylation

Cellulose synthase is a large, multisubunit machine that “swims” along the plant cell membrane as it spins out cellulose fibers. Kumar et al. show that the cellulose synthase complex is heavily modified through S-acylation. Subsets of the acylation sites were required for the complex to integrate into the plasma membrane. A single functional complex could bear as many as 100 modification sites, potentially changing its biophysical characteristics and helping it to associate with the membrane.

Science, this issue p. 166

Abstract

Plant cellulose microfibrils are synthesized by a process that propels the cellulose synthase complex (CSC) through the plane of the plasma membrane. How interactions between membranes and the CSC are regulated is currently unknown. Here, we demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA) proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites. Mutating both the VR2 and CT cysteines permits CSC assembly and trafficking to the Golgi but prevents localization to the plasma membrane. Estimates suggest that a single CSC contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of the CSC and likely influence its immediate membrane environment.

View Full Text