Report

Connections between groundwater flow and transpiration partitioning

+ See all authors and affiliations

Science  22 Jul 2016:
Vol. 353, Issue 6297, pp. 377-380
DOI: 10.1126/science.aaf7891

You are currently viewing the abstract.

View Full Text

Groundwater flow drives partitioning

Soil evaporation and plant transpiration together contribute a substantial proportion of terrestrial freshwater fluxes. Land surface models are used to understand the partitioning of these fluxes on a continental scale; however, model outputs are often inconsistent with stable isotope observations. Maxwell and Condon incorporated dynamic groundwater flow into an integrated hydrologic model simulation for the entire United States. The model showed that water table depth and lateral flow strongly affect transpiration partitioning, thus explaining the inconsistencies between observations and models.

Science, this issue p. 377

Abstract

Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

View Full Text